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Visual facial expression modeling and early predicting
from 3D data via subtle feature enhancing
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Abstract This work investigates a new challenging problem: how to exactly recognize
facial expression captured by a high-frame rate 3D sensing as early as possible, while most
works generally focus on improving the recognition rate of 2D facial expression recog-
nition. The recognition of subtle facial expressions in their early stage is unfortunately
very sensitive to noise that cannot be ignored due to their low intensity. To overcome this
problem, two novel feature enhancement methods, namely, adaptive wavelet spectral sub-
traction method and SVM-based linear discriminant analysis, are proposed to refine subtle
features of facial expressions by employing an estimated noise model or not. Experiments
on a custom-made dataset built using a high-speed 3D motion capture system corroborated
that the two proposed methods outperform other feature refinement methods by enhanc-
ing the discriminability of subtle facial expression features and consequently make correct
recognitions earlier.

Keywords Facial expression · Feature enhancement · Adaptive wavelet spectral
subtraction · Linear discriminant analysis-based SVM

1 Introduction

Facial expression is one of the most important ways that people communicate emotion and
other mental signal besides verbal expressions. As an active and challenging research topic
in computer vision, facial expression recognition impacts many important applications in
areas such as human-computer interaction and human affective recognition, and it can be
also combined with other techniques such as human gaze estimation [14–16] for human
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behavior analysis. Most research on facial expression analysis has focused on obvious facial
expressions near or in the apex phase, not on subtle facial expressions in the onset stage
(for instance, [25, 26, 34]). However, it is important for a wide variety of applications to be
able to understand human emotion quickly, especially for affective computing and human-
computer interaction. In actual situations, people often reveal their true emotion in a brief
and subtle facial expression that does not progress into an obvious expression. They even
momentarily reveal how they truly feel through a subtle facial expression and then try to
hide their feeling by switching their expression [9]. Recognizing facial expressions as early
as possible is essential for correctly understanding human emotions. On the other hand,
natural real-time human computer interaction requires that the robot quickly understand the
person’s emotion, like another person would. However, there has been little work on early
facial expression recognition.

Early facial expression recognition is to recognize facial expressions as early as possi-
ble during its onset phase. In other words, it can be considered as subtle facial expression
recognition. Subtle facial expression features extracted from early stages are always inter-
mingled and thus cannot be readily discriminated into different categories. This makes the
problem more difficult than conventional facial expression recognition or other recogni-
tion/evaluation problems [31–33]. It’s worth noting if the subtle facial expression features
are too sensitive to noise due to their low intensity; in that case, the noise will unavoid-
ably affect the recognition results. To handle this problem more efficiently, in this paper
we extend our analysis from 2D to 3D like other recent techniques [12, 13]. We collect 3D
facial expression data by using a 3D motion capture system. The noise containing in facial
expression features is roughly generated from two aspects. One is the measurement error
generated from 3D motion capture system such as calibration error and tracking error. The
other one is some non-expressional facial motion accompanying with facial expression dis-
playing such as blinking. The expressionless facial motion can be ignored when the facial
expression is obvious (expressional facial motion is prominent). However, because the facial
expression in early stage is subtle, the expressionless facial motion may confuse the early
recognition results. Therefore, we propose to enhance the subtle extracted facial expression
features before classifying them.

Several researchers attempt to develop techniques to analyze subtle facial expressions
[7, 17, 19, 20, 22, 24, 28]. However, most of these researchers focus on exactly repre-
senting the subtle facial changes in facial expressions and hardly investigate subtle facial
expression recognition performance [7, 19, 28] because they rarely consider the noise effect.
Song et al. [19] utilize a method based on vector field decomposition to model subtle facial
expressions. Few effective approaches are proposed to recognize subtle facial expressions.
In [17], Park et al. propose an effective method of recognizing subtle facial expression using
motion magnification to transform subtle facial expressions into their corresponding exag-
gerated facial expressions. Here, motion magnification means magnifying facial motion
deformation. However, their magnification method probably magnifies the noise part con-
taining in subtle facial expression features simultaneously, that would inevitably affect the
final classification result.

Because the existing of noise would result in data being incorrectly classified to some
extent, some feature refinement techniques have been developed to reduce the noise influ-
ence on the observed features [3, 5, 6, 8, 23] in other areas. Generally, these feature
refinement methods are directly removing the noise from the observed data (features)
by analyzing the noise characteristics in frequency domain or spatial domain [1, 3–6, 8,
23, 27]. A suitable filtering algorithm is popularly applied to most of noise reduction
work to remove the measurement errors generated from the measurement sensors. In [1],
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Alexa et al. used Wiener filter as a low-pass filter to remove the noise corresponding to
higher frequencies of noisy surface meshes. Rhijn et al. [27] applied a third order smoother
Kalman filter to smooth a set of motion capture data. Different from the low-pass filters,
the Kalman filter will not make computation errors at the end of a data set. Therefore, it can
be applied in real-time processing systems. Existing subtle facial expression works rarely
consider the noise effect to subtle features and the resulting unsatisfied recognition rate,
whereas some obvious facial expression recognition works consider refining obvious facial
features. Most of them enhance their obvious facial expression features based on a hypoth-
esis that, compared to noise, the meaningful facial features compose most of the principle
component in feature spatial space. Generally, principal component analysis (PCA) is pop-
ularly applied to refine obvious facial features. For example, Calder et al. [4] apply PCA to
remove redundant features by extracting the principal component in spatial domain.

The limitation of above feature refinement approaches is that they generally remove or
reduce the noise based on a hypothesis that the meaningful facial features compose most
of the principle components in spatial domain or correspond to low frequency components
of noisy facial features in frequency domain. However, subtle facial features are probably
equal to the noise in the principal components and are probably distributed at lower frequen-
cies due to their subtle deformation. And the noise may not correspond to higher frequencies
of noisy facial features in frequency domain. Another limitation of existing refining meth-
ods is that most of feature refinement methods are proposed to reduce the measurement
errors generated from measurement sensors. For facial expression analysis, the noise means
unwanted information that is not relevant to the facial expression information being inves-
tigated. The noise generated from the unexpected facial motions such as blinking and rigid
head motion would definitely influence the subtle facial expression information resulting
incorrect classification results. Therefore, the noise generated from the unexpected facial
motions is also need to be reduced for subtle facial expression recognition. Therefore, the
existing refining methods cannot overcome early facial expression recognition problem.

In this paper, two novel feature refinement methods are proposed to reduce the chance
of noise decreasing the discriminability of subtle features and consequently make correct
recognitions earlier. One is adaptive wavelet spectral subtraction method, which is devel-
oped from our previous work in [21]. This method refines subtle features by using an
estimated noise model which is trained from several sets of noise data collected by our 3D
motion capture system. Different from existing filtering methods, the proposed adaptive
wavelet spectral subtraction method is not limited to reduce the noise distributing at higher
frequencies. Moreover, the noise generated from the unexpected facial motions is also con-
sidered to estimate the noise model. In other words, this method can reduce the influence of
noise from the unexpected facial motions. Last but not least, the adaptive wavelet spectral
subtraction method is novelly analyzing the spatial-temporal characteristics of noise. There-
fore, the noise that is probably nearly equal in intensity to the subtle facial features in spatial
domain can be effectively reduced by the proposed method from spatial-temporal domain.
To the best of our knowledge, this is the first effort that refines subtle facial features in the
spatial-temporal domain.

The other proposed method is to refine subtle features by using SVM-based LDA with-
out requiring a noise model. For the former proposed refinement method, the recognition
performance is largely depends on the accuracy of an available noise model. In the situa-
tion that the noise model is not available or accurate enough, the feature refinement method
using SVM-based LDA works. This feature refinement method can improve subtle facial
expression classification performance by cooperating linear discriminant analysis (LDA)
with support vector machine (SVM). The final goal of feature refinement is improving
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the classification performance. Generally speaking, feature refinements in existing works
are independently performed before feature classification. Therefore, the improvement in
classification performance from the feature refinements cannot be directly evaluated. Dif-
ferent from existing de-noise methods, the SVM-based LDA integrating together feature
refinement and feature classification can improve the classification performance by directly
reducing the influence of noise on feature classification. To the best of our knowledge, this
is the first effort that refines subtle facial features by using a feature classification-based
feature refinement method.

The contributions of this paper can be summarized as follows.

– We investigate early facial expression recognition problem with a high-frame rate 3D
motion capture system, while current facial expression recognition works are based on
2D facial expression or 3D facial expression at a lower frame rate. The 3D facial motion
can provide facial deformation along with depth direction which is helpful for analyzing
subtle facial motion in early stage. And the motion capture system with high-frame rate
can capture the quick facial changes that occur when forming facial expressions in their
early stage.

– Two novel feature enhancement methods are proposed to refine the noisy subtle facial
expression features considering estimating a noise model or not. One is adaptive
wavelet spectral subtraction method. This method refines subtle features by using an
estimated noise model which is trained from some sets of noise data collected with our
3D motion capture system. In this paper, a simple review of adaptive wavelet spectral
subtraction method is given. The other proposed feature refining method is using SVM-
based LDA to enhance subtle features without the limitation of learning a noise model.
The feature refining method named SVM-based LDA can improve early facial expres-
sion recognition performance by cooperating with Support vector machines (SVM),
as the margin of SVM can be enlarged by using LDA to maximize class separability.
By comparing with the numerical experiment results of the former proposed refin-
ing method, we could reliably investigate the early recognition performance of the
SVM-based LDA feature refining method.

This paper is organized as follows. In Section 2, two early facial expression recognition
architectures using different feature refining methods are introduced. In Section 3, numerical
early expression recognition results on a 3D facial expression dataset are given to investigate
the performance of the two proposed methods. Section 4 gives a conclusion of this paper.

2 Early facial expression recognition

In this section, two early facial expression recognition architectures based on different refin-
ing methods are explained. Figure 1 shows the overall framework of Architecture I and
Fig. 2 shows the overall framework of Architecture II. In both architectures, Support vector
machines (SVM) is employed to classify the refined facial features. Moreover, a theoretical
analysis is given to explain why the proposed feature refinement method SVM-based LDA
can improve early facial expression recognition performance by cooperating with SVM.

2.1 3D facial expression modelling

In this paper, we firstly utilize a high-speed, maker-based optical facial motion capture
system to capture subtle facial motion that occurs when forming facial expressions in
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High-frame rate 3D sensor

Collection of noise data

Refining of sequential facial features

based on adaptive wavelet spectral subtraction

Collection of 

raw 3D facial expression data

Early recognition of refined frame features

basesd on SVM

Fig. 1 Architecture I of early facial expression recognition

early stage. We collect expression sequence data starting from a neutral expression, and
use the concatenated displacement trajectory of M (M = 26 in our experiments) 3D
facial markers to describe sequential feature of facial expression, which is denoted as
F = [f1, f2, . . . , fM ] ∈ RN×3M . The displacement trajectory of the jth marker is spec-
ified as fj ∈ RN×3, where j = 1, 2, . . . , M . N denotes the total number of frames in
the expression sequence. The concatenated 3D coordinate value of M 3D facial mark-
ers is used to describe frame feature of facial expression at frame t, which is denoted
as dt = [xt,1, yt,1, zt,1, . . . , xt,M, yt,M, zt,M ] ∈ R3M . The positions of M facial markers
pasted on human face are determined by carefully considering muscle movements, as shown
in Fig. 1. The four markers rigidly fixed to a user’s head is used to align the raw 3D facial
feature data from the world coordinate system into a facial coordinate system before feature
refining.

2.2 Two early facial expression recognition architectures

Figure 1 shows the overall framework of Architecture I, which consists of four parts: (a)
obtain facial expression features (facial motion data) from 3D motion capture system; (b)
collect noise data from 3D motion capture system; (c) use the collected noise data to refine
the captured facial expression features by using wavelet spectral subtraction; (d) infer the
category of facial expression by using SVM.

Figure 2 shows the overall framework of Architecture II, which consists of three parts:
(a) obtain facial expression features (facial motion data) from 3Dmotion capture system; (b)
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Early recognition of refined frame features

basesd on SVM

Refining of facial frame features

based on SVM-based LDA

Fig. 2 Architecture II of early facial expression recognition

refine and the captured facial expression features by using SVM-based linear discriminant
analysis (LDA); (c) infer the category of facial expression by using SVM.

In Architecture I, some noise datasets are collected to estimate noise containing in facial
expression features, as shown in Fig. 1. A feature refining method based on adaptive wavelet
spectral subtraction is performed to refine sequential facial features F by using the collected
noise data. Finally, classical SVM is applied to classified the refined facial frame features
d̂t , which is introduced in Section 2.3.1. In Architecture II, a feature refining method based
on SVM-based LDA is performed to indirectly refine facial frame features dt and classi-
fied the refined facial frame features d̂t without using the collected noise data, as shown
in Fig. 2.

2.3 Early facial expression recognition based on subtle features enhancement

In this subsection, two feature refining methods utilized in Architecture I and Architecture
II are introduced. It’s worth noting that these two refining methods are operated on differ-
ent types of facial expression features. The adaptive wavelet-based method is employed to
refine sequential facial expression features F, while the SVM-based LDA is employed to
refine frame features of facial expression dt .
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2.3.1 Early facial expression recognition based on adaptive wavelet spectral subtraction

Actually, the proposed adaptive wavelet spectral subtraction method is an improvement
algorithm of classical wavelet thresholding methods, which are popularly applied to enhance
noise speech signal. The wavelet transform is an efficient signal analysis method in
spatio-temporal terms. The wavelet thresholding methods generally follow three steps. (a)
Transform the noisy signal into wavelet coefficients. (b) Apply a soft or hard threshold at
each scale. (c) Transform back the resulting coefficients and get the estimated signal.

Different with classical wavelet thresholding methods, the proposed adaptive wavelet
spectral subtraction method employ an adaptive threshold at each scale which is estimated
from the noise beforehand. As the analysis in the former section, the limitation of exist-
ing feature refinement methods is mostly based on a hypothesis that the noise mostly
corresponds to higher frequencies of noisy signal (features) in frequency domain. Accord-
ing to this assumption, the wavelet thresholding methods can effectively remove the noise
from noisy signal by simply using a constant threshold. However, compared to the subtle
facial deformation of subtle expressions, the noise may correspond to low frequencies of
noisy facial features in frequency domain. Therefore, an adaptive threshold which can well
characterize the noise in subtle expressions is essential for wavelet thresholding method.

Actually, the process of refining sequential facial expression features F is operated on
the displacement trajectory fj of each single facial marker respectively. For the sake of
clarity of presentation, we omit the index j of the jth marker unless it is necessary to show it
explicitly. Assume that sequential facial expression features f is a noisy observation signal
of a clean sequential signal c so that

f = c + n (1)

where n is the sequential noise. Taking wavelet packet transform of f, c and n, we get
∑

a,b

λa,b(f )ψa,b(t) =
∑

a,b

λa,b(c)ψa,b(t) +
∑

a,b

λa,b(n)ψa,b(t) (2)

where ψa,b(t) is complete orthogonal wavelet basis. The (2) becomes

λa,b(f ) = λa,b(c) + λa,b(n) (3)

where λa,b(f ), λa,b(c) and λa,b(n) are the wavelet packet coefficients of noisy feature,
clean feature and noise. For the sake of clarity of presentation, we omit the index a, b of
wavelet packet coefficients. Based on (3), we can obtain

|λ (f ) |2 = |λ (c) |2 + |λ (n) |2 + 2λ (c) · λ (n) (4)

|λ (c) |2 = |λ (f ) |2 − (1 ± 2λ (c) /λ (n))|λ (n) |2 (5)

According to normal spectral subtraction, we can roughly estimate the wavelet packet
coefficients of clean facial expression features c as follow [29],

λ̂ (c) =

⎧
⎪⎪⎨

⎪⎪⎩

sgn (λ (f )) (|λ (f ) |γ − α|λ̂(n)|γ )
1/γ

if
(
|λ (f ) |γ − α|λ̂(n)|γ

)1/γ
> μ|λ̂(n)|

μ|λ̂(n)| otherwise

(6)

where |λ̂(n)| are the wavelet packet coefficients magnitude estimation of noise n. The esti-
mation algorithm is described in next paragraph. The parameter γ selects the subtraction
domain. The parameter α controls the amount of over-subtraction which is linear with signal
to noise rate ρ(λ).
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Before performing wavelet spectral subtraction on the observed facial features, a noise
model is estimated by using wavelet packet transform. Compared to the normal wavelet
analysis, wavelet packet transform provides more precise analysis because it can choose to
decompose not only the lower frequency domains, but also the higher frequency domains
of a signal. Therefore, the noise model is characterized by synthesizing the wavelet packet
coefficients of the noise.

In order to estimate the wavelet packet coefficients of noise, we collect some noise
datasets {�a,�b, . . .} from 3D motion capture system. The coefficients estimation of the
noise λ̂(n) are computed from following relationships [18],

|λ∗
t (�)| = δ|λ∗

t−1(�)| + (1 − δ)|λt (�)| (7)

λ̂(n) = max
t

|λ∗
t (�)| (8)

where |λt (�)| is the short-term wavelet packet coefficients estimation of noise data � at
frame t and |λ∗

t (�)| is the smoothed-out coefficients estimation at frame t. δ is a memory
parameter.

We refine the wavelet packet coefficients of the noisy feature f by using (6). The refined
coefficients λ̂(c) can be used to estimate the refined sequential facial expression features
ĉ = W−1(λ̂(c)), where W−1(·) denotes wavelet packet reconstruction function. And the
refined facial frame features d̂t can be picked up from the the refined sequential facial
expression features ĉ. Actually, our proposed wavelet spectral subtraction is an improvement
wavelet packet. Different from standard wavelet packet transform, we don’t use an empirical
value to threshold the wavelet coefficients. We use the wavelet coefficients of the noise to
adaptively threshold the wavelet coefficients of the noisy signal, which can be considered
as adaptive wavelet spectral subtraction.

Support vector machine (SVM) is a powerful decision machine that provides a decision
boundary to maximize the margin. Until recently, SVM was one of the most comprehensive
studies with remarkable results on facial expression recognition. To classify facial expres-
sion features dt , K(K − 1)/2 different 2-class SVMs are firstly trained on all possible pairs
of classes, and then classify facial features dt to which class has the highest number of votes.
The classification function of 2-class SVMs is defined as follows,

f (dt ) = ωT dt + b (9)

The weight vector ω and bias b can be obtained by solving the following optimization
problem,

min
ω �=0,b

1

2
‖ω‖2 (10)

s.t. yi(ω
T di + b) ≥ 1 ∀i = 1, . . .n. (11)

where yi ∈ −1,+1 is the label of facial feature dt . As we all know, the solution of ω is a
weighted sum of a set of support vectors dsv as follows,

ω =
Nsv∑

i=1

αiy
sv
i dsv

i αi > 0 (12)

where Nsv is the total number of support vectors.

2.3.2 Early facial expression recognition based on SVM-based LDA

This section introduces another feature refinement method with SVM-based linear dis-
criminant analysis. Different from the former refining method, SVM-based LDA indirectly
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refines subtle features without requiring noise estimation. Moreover, the SVM-based LDA
method integrates the feature refinement and feature classification together. Therefore, this
method can more carefully consider the noise influence on the final classification results
and effectively improve the classification performance.

The proposed SVM-based LDA can be considered as a classifier which also has the
function of feature refinement by integrating LDA into the classical SVM. For subtle facial
expression recognition, subtle facial features in their early stage are very sensitive to the
noise, because they probably dominate a nearly equal component compared to the noise.
The distribution of the support vectors which completely describes the decision surface are
polluted by the noise that cannot be ignored. The optimal solution of SVM formulation, as
shown in (10) is not the optimal margin classifier for subtle facial expression classification.
In this section, LDA is proposed to enhance the distribution of noisy subtle facial fea-
tures, as it can compact the noise and well preserve the class separability of subtle features
simultaneously. The classification function of SVM-based LDA is defined as follows,

f (dt ) = ωT φT dt + b (13)

where enhancement transformation matrix φ is obtained by LDA. The weight vector ω and
bias b can be obtained by solving the following optimization problem,

min
ω �=0,b

1

2
‖ωT φT ‖2 (14)

s.t. yi(ω
T φT di + b) ≥ 1 ∀i = 1, . . .n. (15)

Linear discriminant analysis (LDA) is one of the well-known dimensionality reduction
methods which aim to find optimal transformation by minimizing the within-class distance
and preserving the between-class distance simultaneously [2, 11]. In other words, LDA
searches the best subspace which preserved class separability as much as possible in a
lower dimensional space. In this section, the optimal transformation φ is applied to enhance
the distribution of the observed subtle facial features dt . The enhancement transformation
matrix φ is obtained by maximizing the following optimization problem,

φ = argmax
φ

T r
{
(φSW φT )−1(φSBφT )

}
(16)

where the within-class and between-class covariance matrix SW and SB are defined as,

SW =
K∑

k=1

∑

j∈Ck

(dj − mk)(dj − mk)
T (17)

SB =
K∑

k=1

Nk(mk − m)(mk − m)T (18)

where K is the number of facial expression classes, mk and Nk is the mean and number of
features in class k, and m is the mean of total features.

2.4 Analysis of SVM-based LDA refinement method

It’s necessary to explain why SVM-based LDA could work to refine subtle features without
the limitation of learning a noise model. In this subsection, a theoretically analysis is given
to explain why our proposed feature refinement method SVM-based LDA can provide a
superior margin classifier for subtle facial features classification without suffering the noise
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disturbance and improve early facial expression recognition performance by cooperating
LDA with SVM [10, 30].

Assume that captured facial expression features dt is a noisy observation signal of a clean
signal ct at frame t so that

dt = ct + nt (19)

where nt is the noise at frame t. We also assume that the noise satisfies a Gaussian distri-
bution with mean μn and covariance matrix �n. For a two-class SVM, the weight vector
ωSV M can be rewritten as,

ωSV M = ω+
SV M + ω−

SV M

=
N+

sv∑

i=1

αid
sv
i −

N−
sv∑

j=1

αjd
sv
j (20)

where ω+
SV M and ω−

SV M corresponds to the weighted sum of support vector set in class
yi = +1 and class yj = −1, N+

sv and N−
sv is the total number of support vectors in class

yi = +1 and class yj = −1. By substituting (19) into (20), we can obtain

ω = Dc + Dn (21)

where Dc = ∑N+
sv

i=1αici − ∑N−
sv

j=1αj cj and Dn = ∑N+
sv

i=1αini − ∑N−
sv

j=1αjnj .
By applying the enhancement transformation matrix φ computed by LDA, a new weight

vector ωLSV M is obtained as follow,

ωLSV M = φT Dc + φT Dn (22)

The weight vector ωLSV M is a solution in the solution set of LDA-based SVM. For better
understanding, we restrict ourselves to the 2-class problem, an extension analysis of the
multi-class case can be given by an induction way. The enhancement transformation matrix
φ becomes

φ = S−1
W (mc1 − mc2) (23)

where mc1 and mc2 is the mean of facial features in class y = +1 and y = −1.
In order to compare the classification performance of the ωSV M from SVM and the

ωLSV M from LDA-based SVM, we divide the ωSV M into two complementary subspace
V = [φ] ∈ Rn×1 and V̄ = [φ̄1, φ̄2, . . ., φ̄n−1] ∈ Rn×(n−1).

Then the ωSV M from SVM can be divided into four parts as follows,

ωSV M = (V V T + V̄ V̄ T )Dc + (V V T + V̄ V̄ T )Dn

= φφT Dc + φφT Dn + V̄ V̄ T Dc + V̄ V̄ T Dn (24)

– The former two parts φφT Dc + φφT Dn in ωSV M is corresponding to the ωLSV M for
LDA-based SVM.

– Because Dc approximates to φ = S−1
W (mc1 − mc2) and φ⊥V̄ , the third part V̄ V̄ T Dc in

ωSV M approximates to 0.
– The noise assuming in our study is Gaussian noise. That means the energy of noise

would be relatively averagely distributes on each eigenvectors. Therefore, compared to
the second part φφT Dn, the forth part V̄ V̄ T Dn contains a much larger component in
the covariance information of noise Dn.

According to the above three points, it can be found that 1
2‖ωLSV M‖2 is smaller than

1
2‖ωSV M‖2 in terms of information entropy, as 1

2‖ωLSV M‖2 contains much less noise. And
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the idea of SVM is to maximize the margin ‖ω‖−1. Moreover, Dc which is strongly depen-
dent on class separability of subtle facial features is well preserved in 1

2‖ωLDA‖2. Therefore,
it can be concluded that a superior and more reliable margin classifier is obtained by using
LDA-based SVM.

3 Experimental results and discussions

In this section, we investigate the early facial expression recognition performance of two
proposed facial expression recognition architectures by making numerical experiments. Two
comparison results will be given and we also discuss the early recognition improvement of
the proposed feature refining methods.

3.1 The collection of experiment dataset

3.1.1 Facial expression dataset

We ask five subjects (five females) to make six universal facial expressions (Happiness,
Anger, Surprise, Sadness, Fear, Disgust) as realistically as possible multiple times in front
of a high-frame rate 3D motion capture system as shown in Fig. 1. The speed of the motion
capture system reaches 100 frames per second, which enables it to capture subtle facial
motion. We collected 150 sequences and each expression category contained 25 sequences.
The expression sequence varies from a neutral expression to an apex expression. For each
sequence, we manually label the facial expression category of every single frame. Espe-
cially, we manually judge the earliest frame from that the subject begins to display facial
expression (not neutral expression) by watching the facial expression videos several times.

Figure 3 shows a happy sequence in our dataset. We manually label the facial expression
category of each frame (Neutral or Happy) and judge the first frame that the subject begins
to display happy expression and the frames at which the displaying happiness reach apex
intensity. We denote the first frame as Texp begin and the first frame reaching apex expression

Neutral Subtle Happy Happy Exaggerated Happy

Expression

Intensity
Early

stage1

0 Frame

T

Texp_begin

exp_apex

onset apex

Fig. 3 A happy expression sequence. The expression-begin frame and expression-apex frame are manually
labeled
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as Texp apex . In the early expression recognition test, the best results are neutral before
Texp begin and happy after the time Texp begin.

3.1.2 Noise data collection

In order to refine facial expression features by using adaptive wavelet spectral subtraction,
we need to estimate the noise generated from the 3D motion capture system before per-
forming feature refining. We collect four types of noise datasets {�1, �2, �3, �4} from 3D
motion capture system. They are static objects, free falling objects, static face fixing on a
chinrest with nature expressionless facial motion and rigid facial motion without displaying
expressions respectively. The static type dataset can be used to estimate the calibration error
and moving type dataset can be used to estimate tracking error. Besides that, the face type
dataset can be used to estimate the noise generated from expressionless facial motion. In
[21], we have analyzed the refining performance based on these four types of noise datasets
and concluded that the noise dataset collected by capturing static face is the best choice to
estimate the noise model used in wavelet spectral subtraction, as shown in Fig. 1.

3.2 Comparison results of early facial expression recognition

We evaluate the proposed early facial expression recognition architectures based on the
leave-one-subject-out cross validation methodology. In order to compare early recognition
results, we temporally normalize the length of each facial expression sequence. The normal-
ized value of the frame Texp begin is N(Texp begin) = 0. The frame after Texp begin is given
a positive value and the frame before Texp begin is given a negative value. The value of the
frame Texp apex is set as N(Texp apex) = 1. Then, the normalized value of other frames can
be linearly computed.

Figure 4 plots the early facial expression recognition result of one raw test sequence dis-
playing “Fear”. Figures 5 and 6 plots the early facial expression recognition result of its
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Fig. 4 Early recognition result of one selected original Fear expression sequence FFear .
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Fig. 5 Early recognition result of one selected refined Fear expression sequence F̂Fear based on adaptive
wavelet spectral subtraction

refined test sequence by using adaptive wavelet spectral subtraction and SVM-based LDA.
The different color (symbol) line represents the recognition score of different facial expres-
sion classifier. As you can see from Fig. 4, the frames around Texp begin are mis-recognized
as “Disgust” or “Surprise”, as the green (with circle symbol) or magenta line obtains
the highest recognition score. That is because the noisy facial motion of “Fear” in early
stage is very similar to the noisy facial motion of “Disgust”and “Surprise”. People usu-
ally pull together their brows in the early stage of displaying “Fear” and “Disgust”and
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Fig. 6 Early recognition result of one selected refined Fear expression sequence F̂Fear based on LDA
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begin to open mouth in the early stage of displaying “Fear” and “Surprise”. As shown
in Fig. 5, the recognition results of the frames on the left of Texp begin frame are obviously
improved by using adaptive wavelet spectral subtraction, as the noise model used in adaptive
wavelet spectral subtraction successfully estimate the noise which disturb the discriminabil-
ity between neutral expression and “Fear”expression. The early recognition rate of “Fear”
expression in this sequence is improved. As shown in Fig. 6, the recognition results of the
frames on the right of Texp begin frame are well improved by using LDA, as LDA effectively
improve the discriminability between “Fear” expression and “Surprise”expression. The
“Fear” expression is earlier recognized in this sequence consequently.

We investigate the performance of early facial expression recognition from two aspects.

– One is how early that the facial expression can be recognized in their early stage. We
use the frame Texp begin as the ground truth of the facial expression occurring frame.
The distance between the earliest frame Trecog begin correctly recognized by SVM and
the frame Texp begin is computed to evaluate the “early” performance. We denote this
distance as early recognition error error = Trecog begin − Texp begin.

– The other one is miss recognition rate in the early stage of displaying facial expression.
For a real-time human interaction system, it’s acceptable to recognize these frames as
neutral or the ground truth expression category. However, it should be avoided that these
frames are wrongly recognized as other expression categories. The miss recognition
rate can be obtained by calculating the amount of miss recognized frames in early stage.

Figures 7 and 8 compares the average early recognition error and miss recognition rate
of our proposed methods with the results on raw features and its refined features based on
PCA. The “Ori” in Figs. 7 and 8 denotes the recognition results of raw facial features. The
experiment results agree with the theoretical analysis. It is clear that the proposed refining
method based on wavelet subtraction and SVM-based LDA both improve the early recogni-
tion performance. We obtain better early recognition results than using PCA. The proposed
wavelets spectral subtraction method well removes the noise in neutral expression which
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Fig. 7 Early facial expression recognition error. Ori denotes the results of raw facial expression features,
PCA denotes the results of the refined features based on PCA, Adaptive wavelet denotes the results of the
refined features based on the proposed method adaptive wavelet spectral subtraction and LDA denotes the
results of the refined features based on SVM-based LDA
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Fig. 8 Miss recognition rate. Ori denotes the results of raw facial expression features, PCA denotes the
results of the refined features based on PCA, Adaptive wavelet denotes the results of the refined features
based on the proposed method adaptive wavelet spectral subtraction and LDA denotes the results of the
refined features based on SVM-based LDA

makes the recognition result of neutral expression more stable. It is helpful to reduce the risk
of being recognized as a wrong expression category, as shown in Fig. 8. In Fig. 7, the early
recognition error of SVM-based LDA is better than other methods’ results. SVM-based
LDA refines subtle features by reducing the noise influence and maximize the separabil-
ity of subtle facial expression features simultaneously which makes the early recognition
become earlier.

The experimental results corroborated that both feature refinement methods can success-
fully reduce the effect of noise for subtle facial expression features and consequently make
correct recognitions earlier. The former feature refinement method, adaptive wavelet spec-
tral subtraction, has a prior performance on enhancing the discriminability between neutral
expression and other facial expression categories, and consequently reduces the recognition
errors. The latter refinement method, SVM-based LDA, has a prior performance on enhanc-
ing the discriminability between different subtle facial expression categories, contributing
to an earlier recognition of facial expressions.

4 Conclusion and discussion

This paper investigates subtle facial expression recognition problems with a high-frame rate
3D motion capture system, while current facial expression recognition works are based on
2D facial expression or 3D facial expression at a lower frame rate. The 3D facial motion
can provide facial deformation along with depth direction which is helpful for analyzing
subtle facial motion in early stage. And the motion capture system with high-frame rate can
capture the quick facial changes that occur when forming facial expressions in their early
stage.

The low intensity of subtle facial expression features (deformations) makes them very
sensitive to noise and the noise can easily affect the early recognition result. Conventional
facial expression recognition mainly focuses on recognizing obvious facial expressions and
often ignores the influence of noise on feature classification. On the other hand, existing
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feature refinement approaches (such as principal component analysis and filtering) cannot
successfully reduce the influence of noise on subtle facial features. This is because they only
work when the facial features compose most of the principle components in feature spatial
space or the noise is distributed at higher frequencies. In the case of subtle facial expression
recognition, the noise is probably nearly equal in intensity to the subtle facial features in
spatial domain and is probably distributed at lower frequencies.

Therefore, to alleviate the influence of noise on early facial expression recognition, two
feature refinement methods were devised to enhance subtle facial features. One is adap-
tive wavelet spectral subtraction, which spatial-temporally refines subtle facial expression
deformation with an estimated noise model. In particular, a wavelet packet method is used
to analyze the spatial-temporal characteristics of the noise in subtle features. To the best of
our knowledge, this is the first effort that refines subtle facial features in the spatial-temporal
domain. The estimated noise model is then used to adaptively reduce the noise not only at
high frequencies but also at low frequencies.

The other subtle feature refinement method is LDA-based support vector machine, which
combines the idea of linear discriminant analysis (LDA) with support vector machine
(SVM). The SVM-based LDA method refines subtle features by compacting noise and
maximizing the class separability of subtle features without requiring a noise model. The
margin of the LDA-based SVM can be enlarged, and consequently, the classification per-
formance improves. The final goal of feature refinement is improving the classification
performance. Generally speaking, feature refinements are independently performed before
feature classification. Therefore, the improvement in classification performance from the
feature refinements cannot be directly evaluated. The SVM-based LDA integrating together
feature refinement and feature classification can improve the classification performance by
directly reducing the influence of noise on feature classification.

Experiments corroborated that the above described feature refinement methods outper-
form other feature refinement methods by enhancing the discriminability of subtle facial
expression features and consequently make correct recognitions earlier. Our current research
mainly focuses on processing subtle facial expression feature captured in their early stage.
In future work, we will make effort in learning a suitable classifier to completely improve
the early recognition performance.
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